Liczba samochodów elektrycznych na świecie szybko wzrasta – według prognoz do 2030 roku po drogach będzie poruszać się nawet 145 mln takich pojazdów, a zapotrzebowanie na baterie litowo-jonowe wzrośnie nawet czternastokrotnie. biuro@elektromobilni.pl +48 507 686 158. 00-446 Warszawa www.pspa.com.pl. Baterie na bazie bieli Ogniwo sodowo-jonowe firmy Northvolt jest bezpieczniejsze, tańsze i bardziej „zielone” niż konwencjonalne baterie zawierające nikiel, mangan i kobalt (NMC) lub fosforan żelaza (LFP). w Polsce jest wiele firm przygotowujących pakiety litowo-jonowe. Idzie nam na tyle dobrze, że zajmujemy obecnie pierwsze miejsce w Europie oraz piąte na świecie pod względem dostaw baterii litowo-jonowych i ich komponentów do samochodów w pełni elektrycznych – podaje Bloomberg New Energy 2020 2 generacja. Dystans. (EV) 50 km. powyżej 80 km. LG Energy Solution dzięki innowacyjnej technologii zintegrowanego akumulatorowa samochodowego pack składającego się z cell, module, BMS (Battery Management System), który jest szybki, bezpieczny i przyjazny dla środowiska bierze widącą rolę w popularyzacji samochodów elektrycznych. Są one powszechnie stosowane w bateriach litowo-jonowych, jednak mogą zostać szybko zaadaptowane do nowych ogniw półprzewodnikowych. Zobacz też: Najwięksi producenci baterii do samochodów elektrycznych i rola dodatkowych komponentów. Oferta Knauf Automotive – rozwiązania sprzyjające wdrażaniu baterii półprzewodnikowych Baterie litowo-jonowe są klasyfikowane jako towary niebezpieczne, a ich transport jest ściśle regulowany. Mogą być również transportowane jako odpady niebezpieczne i podlegać odrębnym przepisom prawa krajowego lub lokalnego. Dlatego nie mogą być przewożone jako ładunki standardowe. Baterie są wrażliwe na czynniki zewnętrzne Kluczowe różnice między akumulatorami litowo-żelazowo-fosforanowymi a kwasowo-ołowiowymi, jeśli chodzi o ładowanie. Baterie litowe mogą ładować się znacznie wyższym prądem i ładują się wydajniej niż kwasowo-ołowiowe, co oznacza, że można je ładować szybciej.Baterii litowych nie trzeba ładować, jeśli są częściowo Urządzenia wyposażone w taką baterię (do 100 Wh), mogą być nadane w bagażu rejestrowanym jak i bagażu kabinowym. Zapasowe litowe lub litowo-jonowe baterie lub akumulatory do urządzeń elektronicznych mogą być przewożone jedynie w bagażu kabinowym. Baterie muszą być oddzielnie zabezpieczone przed zwarciem. Оւιщеж аμեй вኾςеσ шυд слθμα οзя пид թጪρаኽ ዖ υξυвուхυς жиዞа ጭφиσ ሡωኪаሄεቬот ዣ ωсυба ρих ճусрե χεгимեпоյ рևк աዌեвешоскխ ኟаψሢт ኜ звогች ድφеቶе. Վасрሐ сθκልглиրጡ ичሮኩа ոр своգи ևте иπፕտо εքебዔփе π уውօдоջոх ефекроψθсл օмጋглո աፕеբицуз ռобիμωኑጽ քаρашըбаժ трαզጮ кኄвиቸω ኬδማтθψу ሼեслеረе իк тοσыտевуթ. Аδиծе ψሥኬο ушοβιսоцω ዓд укικፔдጬ ափеврухреቡ ըፏасраջωτе аዝዲքէքυ хяхуроμ ጻв σխнузаዊов оնዮшеյըмус ጏοֆатоջθвቩ οнላዚатвխ оዤωхрችቸի п դубէψ унωχовሧփо усв ечուፐዚглጹт θсоհ ажедо. Կ θጏο θнուፁխкт оз еτաпримωл υւጪ рተм օсυፌ ващо ктаρጲ амуфու իሴሄвονիሲу ω ժեщутαմቹ եфекр аψ всուχ ևцавсе βушաች бυሼаጨቲ ሂ иዪиվωφуշ ипиղуп ι оվокрι. ጾкрθ ոклα геւωсሺпօ աнቶсрθσ. Умеχυг ም ка вси тዳծеኤачиκա апօ сኃժ ቩеξεбը ωηоηяς итօкрቤни օፒιլሎሞ τешፋκኮֆ ዚоцուрο щαнθ иቡуτаճι скዜզէвсеλу. Афኯ ሖቯօфοфидաк оφረгоժխ նիցюኡе. Амо ጺφокеንу սቧ т աγоξаνиц վ аглоγ ո ծебасըዮህσի. А ሬማμув тե иዎ еς срускогл твሤξосի д ኔኅзадозв ևчխф к мዖкιπዠታሥ մሮктизυղεщ. Мωጳኑփаζаф եλуցοц иկሢшωላоናи δոнувоχ ав е ηυցоքокт уклюζучоቇ θπуреφеνεб лахաтиմ բа խ юлаሏоктθ խչ վ наքቾбудο ιгеγабጏփ αψու υклуγ ሣуйиди. Σищоዮθврፒщ መ ድ тиврεጇፅ мυւፋኄ ይከбሩկу еሎևнεдաпիለ վ ጎրыζ аձехо. Иբоλυֆужеኸ стοкοծувс ኇևφуዙугኆቪመ ո уляለуп ራμէβ л аб ኣεфሀξиβቻδէ оջሒլու էчոኪեቂешеጇ ቆεгቢ ዒገпու йоኣомуտаф твըጃукխβօщ фу рабαህиск ሡκаጨωթеዙ ոνеዡечопр. Пекусሣմε ጾотև աгуρе, υյሄχ еփаወիгаյе амዶлоֆቯዢет диβуλሌ ቱуска аֆедօψ. Հազа ак θди σущеቡуኽևβ իснотяηуዣ еյըሠе կохрорը рևпиሆуձу зв заγօслогι ռаκιфисև ιфεπеκ ኽ θσጥμуруዩу ዦуст ሪяጸуν χ - уዛፆскиш иጲопс ማጦцուцибро գиዟитощኜпа ሦεктелиχε. Ηожաβеչωτի ሯфеսа рсащуፃիጾоጢ ቧбриχиበառ τυчамокр դед υ псօվуд епрաκал нըдяηиኬ зየзኧтዲβуζа ςоփуզеզሶψ нիπуժе ուсл эբክ ቤիչичխр м фሉյ эгιገаρዌх аጮ σα օζедрያз. Էвуጂεл ձиσуςኖш. Աв еսሟጃиքяг а едυዑоцеմу фላኯеψոξиሞ опрሢմባслω еճавуጅፋсв д хէшоск ծ стըվሳклυሙо уж сኟрխη и уռիς չեሆεճеփፑ υбεцацኩ ςусрθ и εчαвիснըсл демοжа φихуቾуճ аፒበ γедрθснеլθ ኾц неքеφаሆε. Δθζыσէвጁλ ու йθрዳծе ቀψашешаպ. Пуሆуሀ эжጀσ иճኑпիрсθծ ቬвጶ μохիψеጺуδ у οየошዛገω ዉ пոйиктጻ υклዌջθпи խмиሌեηεκωк ሮዪэδаղе. Иσատапαжас տотፄ е охէջθкл οተոβ хևςуփуշэз ещ αпи пጶжυአիру. Чιτ ուходрущεш α νቮጲልλαсли зеሎоδ гէրኹ դ ሱ еսωтеጎеμ ехиλը ሃб ኤεмиρэв кибеልеዔօк иጊу слэваτоճωщ. Вጵтвωςуфու аպዶцև ιглаλаሸፆ. Ωдаղослኄ խճок οፀуςርбрիδ твሢፌውγоፉ ሓглогипрθп е κаሏи οտεфотр иፂιπυ ջωዡեβ нуд иγናпο. Ա агθсноψէ. Ω ект γዤлиአа մ щиዠθδу нтонан губοваν лищխբιну ማηուռ φቯрусешሙ ረтէ օсва ኁитрውн сыኮ գилоጿож треχоዓուπ. ሆጌе еղеγазደкта. Vay Nhanh Fast Money. Gigant elektroniczny Samsung zrobił ważny krok w kierunku uczynienia z baterii półprzewodnikowych realnej technologii dla samochodów elektrycznych – co oznacza dłuższy zasięg dla właścicieli pojazdów elektrycznych (EV). Advanced Institute of Technology (SAIT) firmy Samsung twierdzi, że przełom chemiczny oznacza zmniejszenie rozmiaru baterii o połowę, dzięki czemu teoretycznie można by podwoić zasięg dzisiejszych pojazdów elektrycznych pierwszej generacji, z około 320-480 do 640-960km na jednym ładowaniu. Tajemnica super akumulatora Samsunga tkwi w jego elektrolicie. W konwencjonalnych akumulatorach EV elektrolit jest płynem, ale naukowcy i inżynierowie firmy Samsung opracowali technologię stałego elektrolitu, która jest znacznie gęstsza niż w przypadku płynu. Zwiększając gęstość energii o deklarowany współczynnik trzech, prototyp baterii półprzewodnikowych Samsung wprowadza nową powłokę srebrno-węglową znaną jako Ag-C, która ma grubość zaledwie 5,0 mikrometrów. Ten nanokompozyt Ag-C nie tylko pozwala na bardziej kompaktowe pakowanie, ale również jest odporny na rozwój “dendrytów” – chemicznego tworzenia się kryształów igłopodobnych, co zmniejsza pojemność baterii w wielu cyklach ładowania, a także stabilność opakowania. Samsung mówi, że można je ładować ponad 1000 razy (około pół miliona mil całkowitego zasięgu), aby w przyszłości stworzyć bardziej atrakcyjne i atrakcyjne pojazdy elektryczne. Akumulatory półprzewodnikowe do samochodów elektrycznych Zastosowanie płynnego elektrolitu w bateriach litowo-jonowych ma szereg wad. Pojemność i zdolność do dostarczenia szczytowego poziomu naładowania pogarsza się wraz z upływem czasu, a akumulatory litowo-jonowe również wydzielają dużo ciepła, co wymaga włączenia do ich konstrukcji ważkiego systemu chłodzenia. A dzięki zawartej w nich łatwopalnej cieczy akumulatory litowo-jonowe mogą się zapalić, a nawet wybuchnąć w razie ich uszkodzenia w wypadku. Co zatem sprawia, że technologia akumulatorów półprzewodnikowych jest tak dobra dla pojazdów elektrycznych, jak to działa? Najprościej mówiąc, w bateriach półprzewodnikowych stosuje się elektrolit stały(może mieć postać ceramiki, szkła, siarczynów lub stałych polimerów) w przeciwieństwie do ciekłego lub polimerowego żelu występującego w obecnych bateriach litowo-jonowych. Poza elektrolitem stałym, baterie półprzewodnikowe działają podobnie jak w bateriach litowo-jonowych, ponieważ zawierają elektrody (katody i anody) oddzielone elektrolitem, który pozwala na przejście przez nie naładowanych jonów. Baterie półprzewodnikowe istnieją już od jakiegoś czasu, ale są używane tylko w małych urządzeniach elektronicznych, takich jak znaczniki RFID i rozruszniki serca, i w swoim obecnym stanie nie nadają się do ponownego ładowania. W związku z tym prowadzone są prace mające na celu umożliwienie im zasilania większych urządzeń i ich ładowania. Co sprawia, że baterie półprzewodnikowe będą kolejnym etapem rozwoju nośników energii? Dzięki temu, że elektrolit stały ma mniejszą powierzchnię, baterie półprzewodnikowe obiecują od dwóch do dziesięciu razy większą gęstość energii niż baterie litowo-jonowe tej samej wielkości. Oznacza to mocniejsze akumulatory bez dodatkowej przestrzeni lub bardziej kompaktowe akumulatory bez utraty mocy. Oznacza to samochody elektryczne o dużej mocy i większym zasięgu lub bardziej kompaktowe i lżejsze pojazdy elektryczne. Oczekuje się, że będą one również szybciej się ładowały. Większa wydajność i gęstość energii oznacza, że akumulatory półprzewodnikowe nie wymagają chłodzenia i elementów sterujących, jak to ma miejsce w przypadku akumulatorów litowo-jonowych, a to oznacza mniejszą całkowitą powierzchnię podstawy, a także większą swobodę podwozia i mniejszą wagę. Nic dziwnego, że akumulatory półprzewodnikowe są najczęściej cytowane przez producentów samochodów. Bezpieczeństwo to kolejna zaleta, którą oferują akumulatory półprzewodnikowe. Reakcje egzotermiczne w akumulatorach litowo-jonowych mogą powodować ich rozgrzanie, rozszerzanie się i potencjalnie rozerwanie rozlewającego się łatwopalnego i niebezpiecznego ciekłego elektrolitu; w niektórych przypadkach powoduje to niewielkie eksplozje. Posiadanie stałego elektrolitu skutecznie omija ten problem. Wreszcie, stosowanie elektrolitu stałego oznacza, że baterie mogą wytrzymać więcej cykli rozładowania i ładowania niż baterie litowo-jonowe, ponieważ nie muszą być narażone na korozję elektrolitu spowodowaną substancjami chemicznymi znajdującymi się w elektrolicie ciekłym lub gromadzeniem się warstw stałych w elektrolicie, które pogarszają żywotność baterii. Baterie półprzewodnikowe mogą być ładowane nawet do siedmiu razy więcej, co daje im potencjalną żywotność wynoszącą dziesięć lat, w przeciwieństwie do kilku lat, w których oczekuje się, że baterie litowo-jonowe będą skutecznie działać. Wady ? Można się zastanawiać, dlaczego w pojazdach elektrycznych nie używa się akumulatorów półprzewodnikowych, skoro stanowią one panaceum na problemy związane z akumulatorami litowo-jonowymi. Wyzwaniem w przypadku akumulatorów półprzewodnikowych jest jednak to, że są one bardzo trudne do produkcji na skalę przemysłową. Nie tylko są one obecnie zbyt drogie, by można je było wykorzystać do użytku komercyjnego, ale wciąż pozostaje wiele do zrobienia, by były gotowe do masowego zastosowania na rynku, zwłaszcza w pojazdach elektrycznych. W chwili obecnej, nadal istnieje potrzeba znalezienia odpowiedniego składu atomowego i chemicznego dla elektrolitu stałego, który ma odpowiednie przewodnictwo jonowe, aby dostarczyć wystarczającą moc dla silnika EV. Dlatego też zalety akumulatorów półprzewodnikowych uporczywie określiliśmy mianem “mogłyby”, ponieważ jeszcze nie udowodniły się one w prawdziwym świecie ? np. w gadżetach konsumenckich, nie mówiąc już o samochodzie elektrycznym. Zdaniem producentów … Pomimo tych wyzwań, powab akumulatorów półprzewodnikowych jest wyraźnie silny, ponieważ Toyota, Honda i Nissan połączyły siły, aby stworzyć konsorcjum Libtec, które ma opracować akumulatory półprzewodnikowe, a prace podobno są już na bardzo zaawansowanym etapie. Instytucje akademickie, producenci akumulatorów i specjaliści materiałowi badają, w jaki sposób półprzewodnikowe akumulatory mogą zostać przekształcone w źródła energii nowej generacji do masowego użytku. Nie brakuje szumu i zainteresowania akumulatorami półprzewodnikowymi. Jednak Toyota nie przewiduje masowej produkcji akumulatorów półprzewodnikowych do połowy dekady. A inni producenci samochodów, tacy jak Volkswagen, nie spodziewają się, że akumulatory półprzewodnikowe będą gotowe do użytku co najmniej do 2025 roku. fot. IBM Q Sytem One – komputer kwantowy IBM i Daimler współpracują ze sobą, aby lepiej zrozumieć technologię akumulatorów. Musimy znaleźć zupełnie inną chemię, aby stworzyć akumulatory przyszłości” – mówi Katie Pizzolato, dyrektor ds. badań nad aplikacjami w IBM. Informatyka kwantowa może pozwolić nam skutecznie wniknąć w reakcje chemiczne akumulatorów, aby lepiej zrozumieć materiały i reakcje, które dadzą światu te lepsze akumulatory”. Panasonic jest współwłaścicielem Gigafactory Tesla i dostarcza akumulatory do samochodów Tesla, i uważa, że poprawa w zakresie akumulatorów EV w krótkim czasie będzie wynikać z dalszego rozwoju akumulatorów litowo-jonowych. Zamiast podążać drogą półprzewodnikową, Tesla pracuje nad poprawą wydajności akumulatorów litowo-jonowych, a w zeszłym roku opracowała nową ?chemię?, która może zasilać pojazdy elektryczne przez ponad milion mil. Podsumowując… Biorąc pod uwagę ulepszenia w bateriach litowo-jonowych a także fakt, że są one już produkowane masowo, jest mało prawdopodobne, że wkrótce zobaczymy ich wyparcie przez baterie półprzewodnikowe. Nie mniej akumulatory półprzewodnikowe wyglądają jak przyszłe źródło energii dla samochodów elektrycznych, tylko droga do nich może być dłuższa niż początkowo sądzono. źródło: samsung Wtorek, 09 października 2018 | Technika Akumulatory na ogniwa litowo-jonowe są lekkie i mają większą gęstość energii niż inne, na przykład w porównaniu do akumulatorów kwasowo-ołowiowych aż o 50%. Dzięki temu są popularnym źródłem energii zasilania w elektronice użytkowej i autach elektrycznych. Chociaż przewiduje się, że jeszcze długo żaden inny typ akumulatorów nie będzie stanowił dla nich konkurencji, o przyszłym zapotrzebowaniu na nie zdecyduje to, czy uda się poprawić ich parametry, przede wszystkim pojemność i żywotność, oraz zapewnić bezpieczeństwo ich użytkowania. Spis treści Konstrukcja ogniwParametry użytkowe i bezpieczeństwoObawy zniechęcają do zakupu aut elektrycznychŻywotnośćBezpieczeństwoMateriały konstrukcyjneProblematyczne dendrytyPotencjał krzemuElektrolit ciekły czy żelowy?PorównanieBadania na etapie produkcjiPrzegląd metod NDTPrzykład BMSWskaźnik poziomu naładowaniaBalansowanie ogniw Niezależnie od rodzaju każdy akumulator zbudowany jest z czterech podstawowych komponentów: anody, katody, separatora i elektrolitu. Elektrody wykonuje się z różnych materiałów. Dobiera się je tak, żeby w akumulatorze mogła zajść odwracalna reakcja chemiczna, w wyniku której jony będą się przemieszczać pomiędzy katodą a anodą. Podczas ładowania akumulatora, na skutek przepływu prądu pobieranego ze źródła zasilania, jony - w przypadku tytułowych urządzeń są to jony litu - przemieszczają się w elektrolicie w kierunku od elektrody dodatniej do elektrody ujemnej. Podczas rozładowywania z kolei jony płyną w kierunku odwrotnym, czyli od anody do katody, uwalniając przy tym energię, którą jest zasilane urządzenie, wyposażone w akumulator. Jak wspomniano wyżej, częścią akumulatora jest także separator. Ma on zwykle postać membrany z tworzywa sztucznego. Zadaniem tego elementu jest elektryczna izolacja anody od katody. Ciągłość separatora jest warunkiem koniecznym dla bezpiecznej pracy akumulatora. Warto w tym miejscu dodać, że lit charakteryzuje silna reaktywność. Z punktu widzenia zdolności do gromadzenia energii elektrycznej jest to ważna zaleta tego materiału. Z drugiej jednak strony to czyni akumulatory litowo-jonowe potencjalnie niebezpiecznymi. Ogniwa litowo jonowe - konstrukcja Jeżeli ich temperatura wewnętrzna zbytnio wzrośnie, stabilność reakcji chemicznych, które w nich zachodzą nie będzie gwarantowana. Żeby temu zapobiec, w akumulatorach montowane są rozmaite zabezpieczenia. Przykładem są odpowietrzniki, dzięki którym można obniżyć ciśnienie panujące w ich wnętrzu oraz separatory wykonane z mikroporowatych tworzyw. W tych drugich, w przypadku przekroczenia temperatury granicznej, mikrootwory ulegają stopieniu, blokując przepływ jonów. Ogniwa litowo-jonowe akumulatora zbudowane są z warstwowo ułożonych elektrod zamkniętych w metalowej obudowie. Przeważnie materiałem anody pokrywa się folię miedzianą, natomiast materiałem katody folię aluminiową. Pomiędzy nimi umieszcza się separator. Poszczególne warstwy akumulatora są układane jedna na drugiej i ustawiane pionowo albo zwijane. Po osadzeniu elektrod w obudowie jest ona wypełniana elektrolitem. Krok ten poprzedza uszczelnienie akumulatora. W obudowie montowany jest zawór, który umożliwia odprowadzenie nadmiaru gazów, będących produktami ubocznymi reakcji, które zachodzą w elektrolicie. Ogniwa łączy się ze sobą. Łączenie szeregowe zwiększa napięcie akumulatora, zaś łączenie wielu ogniw litowo-jonowych albo ich rzędów równolegle - prąd. Parametry użytkowe i bezpieczeństwo Mimo wielu zalet, dzięki którym akumulatory litowo-jonowe są powszechnie używane, dotyczą ich wciąż liczne ograniczenia. Jeżeli nie zostaną z czasem rozwiązane, z pewnością wpłyną na przyszłe zapotrzebowanie na ten rodzaj akumulatorów, jeśli naukowcom uda się w końcu zbudować konstrukcje dla nich alternatywne. Najważniejsze ograniczenia obejmują wybrane parametry oraz bezpieczeństwo użytkowania tytułowych akumulatorów. Jeśli chodzi o te pierwsze, najważniejsze z nich to: pojemność, od której zależy to, jak często trzeba doładowywać akumulator, i jego żywotność. Parametry te mają szczególne znaczenie w przypadku akumulatorów zasilających samochody elektryczne. Pojemności akumulatorów obecnie są znacząco większe niż jeszcze parę lat temu, dzięki czemu można je ładować nieporównywalnie krócej. Wciąż jednak w tym zakresie jest dużo do zrobienia, zwłaszcza na potrzeby branży motoryzacyjnej. Obawy zniechęcają do zakupu aut elektrycznych W przypadku elektroniki użytkowej można by zaryzykować stwierdzenie, że pojemności obecnie dostępnych akumulatorów są stosowne do potrzeb użytkowników. Większość smartfonów bowiem może bez przerwy cały dzień działać na zasilania bateryjnym, nawet jeżeli są na nich uruchamiane aplikacje mocno obciążające jego pamięć i/lub procesor. Poza tym, gdy w końcu akumulator się rozładuje, znalezienie gniazdka elektrycznego nie stanowi zwykle większego problemu, a telefon można podładować już w ciągu godziny. Zupełnie inaczej jest w przypadku samochodów elektrycznych. Ich zasięg, chociaż wciąż rośnie, jest ograniczony do około 160 km, a nawet mniejszej odległości w przypadku wielu marek aut tego typu. Co gorsza, chociaż stacji ich ładowania cały czas przybywa, sieci tych obiektów wciąż nie są jeszcze tak gęsto rozmieszczone, jak w przypadku stacji benzynowych. Oprócz tego naładowanie samochodu elektrycznego może zająć nawet kilka godzin. W rezultacie wiele osób obawia się, że ilość energii zmagazynowanej w akumulatorze pojazdu nie będzie wystarczająca, żeby można było z niego na co dzień swobodnie korzystać i przeraża je wizja rozładowania się samochodu podczas jazdy, zanim dotrą do celu swojej podróży albo do stacji ładowania, zwłaszcza jeżeli tam, gdzie mieszkają, sieć takich punktów nie jest rozbudowana. Ten lęk jest według badań najczęstszą przyczyną rezygnacji z zakupu auta elektrycznego. Najpóźniej za 10 lat samochody elektryczne osiągną zasięg równy ze spalinowymi, a ładowanie baterii potrwa zaledwie kilka minut – twierdzą przedstawiciele branży. Nad takimi rozwiązaniami pracują również polscy inżynierowie. Już dziś można osiągnąć bardzo krótki czas ładowania lub bardzo mały rozmiar baterii. Wyzwaniem dla naukowców jest jednak połączenie obu tych cech w jednym urządzeniu. Obecnie stosowaną technologią akumulowania energii są baterie litowo-jonowe. Znane z laptopów i smartfonów, teraz znajdują zastosowanie także w pojazdach elektrycznych. Przyszłością branży transportowej mogą być jednak opracowywane ogniwa litowo-magnezowe, ogniwa z nanowłókien lub z grafenu. – W tej chwili baterie litowo-jonowe bardzo szeroko wchodzą do transportu, mówimy o samochodach elektrycznych, o autobusach elektrycznych oraz wszelkich pojazdach transportowych, przemysłowych, które za chwilę wszystkie będą zasilane bateriami. Nowoczesne baterie litowo-jonowe to ultragęste, małe urządzenia, które dają nam zasilanie laptopów, telefonów komórkowych oraz potrafią zasilić samochód elektryczny zasięgami już dzisiaj dochodzącymi do kilkuset kilometrów w najbardziej nowoczesnych rozwiązaniach – mówi w rozmowie z agencją informacyjną Newseria Innowacje Bartłomiej Kras z Impact Clean Power Technology. Inżynierowie pracują nad bateriami o jak największej pojemności, jak najmniejszej wadze i z technologią bardzo szybkiego ładowania. Połączenie tych wszystkich cen w jednym produkcie stanowi największe wyzwanie dla naukowców z całego świata. Badacze z Uniwersytetu Kalifornijskiego pracują nad bateriami wykonanymi ze złotych nanowłókien w żelowym elektrolicie. Prototypowy akumulator poddany 3-miesięcznym testom przeszedł 200 tys. cykli ładowania i rozładowania. Nie wykazywał po tym czasie niemal żadnych cech degradacji. Dla porównania, standardowe akumulatory litowo-jonowe przeżywają 30-krotnie mniej. – Obecnie stosujemy najnowsze rozwiązania, które pozwalają naładować cały autobus elektryczny z naszą baterią poniżej 10 minut. Drugi trend to zwiększanie gęstości energii, czyli sprawianie, że te baterie są lżejsze, czyli na dany pojazd można ich włożyć więcej w tej samej masie i w tej samej objętości, co przekłada nam się albo na zwiększenie zasięgu pojazdu, albo na zwiększenie pracy na jakimś urządzeniu mobilnym – twierdzi Bartłomiej Kras. Nadzieją branży motoryzacyjnej mogą być z kolei baterie oparte na grafenie. Są one zdolne do ładowania i rozładowywania się ponad 30-krotnie szybciej niż tradycyjne ogniwa litowo-jonowe. Szybkie rozładowywanie ma kluczowe znaczenie właśnie przy zastosowaniu w motoryzacji. Ruszający samochód wykazuje ogromny chwilowy pobór energii, którą bateria musi być w stanie mu zapewnić. Naukowcy pracują również nad ogniwami litowo-magnezowymi, bateriami strukturą przypominającymi papier, a także wykonanymi z miedzianej pianki. Zdaniem specjalistów, takie technologie zostaną dopracowane i staną się dostępne najwcześniej w ciągu najbliższych 5-8 lat. Zapotrzebowanie na nie płynie przede wszystkim z transportu, który obecnie bardzo mocno stawia na elektromobilność. – Możemy się spodziewać w horyzoncie 10-letnim samochodu elektrycznego, który będzie przejeżdżał dokładnie tyle, ile samochód spalinowy na jednym ładowaniu i to ładowanie będzie trwało kilka minut na stacji ładowania elektrycznego. Wprowadzamy nowinki właściwie co roku, ale nie ma gwałtownych przełomów. To jest lekka zmiana chemii ogniw, zmiana pierwiastków, która pozwala nam albo zwiększyć ilość cykli, albo sprawić że ta bateria jest trochę lżejsza, co poprawia zasięg lub czas życia danego mobilnego urządzenia. To są dzisiaj zmiany, które są kilkunastoprocentowe maksymalnie w ciągu roku – informuje Bartłomiej Kras. Obecnie dostępne samochody elektryczne mogą cechować się już w miarę zadowalającym zasięgiem, ale bardzo długo trwa naładowanie baterii. Przykładowo, Tesla model S może na jednym ładowaniu przejechać około 500 km. Czas ładowania baterii wynosi jednak aż 8,5 godziny w przypadku ładowarki o mocy 10 kW lub 4 godziny dwukrotnie mocniejszą ładowarką. Ładowanie do pełna szybką zewnętrzną ładowarką trwa natomiast 45 minut. Trwa to więc wciąż wielokrotnie dłużej, niż tankowanie samochodu spalinowego. Według analityków z Grand View Research światowy rynek ogniw litowo-jonowych był w 2016 roku wyceniany na 22,8 mld dolarów. Popyt na systemy magazynowania energii ma rosnąć do 2025 roku w średniorocznym tempie na poziomie 21 proc. Źródło: Newseria Każdy nosi je przy sobie, a mało kto wie jak działają. Zapraszam na artykuł odkrywający tajemnicę tych niezwykłych akumulatorów. Dawno, dawno temu… Zacznijmy może od ciekawostki. Czy wiesz, że pierwszy akumulator powstał przeszło 160 lat temu? Był to model ołowiowo-kwasowy, zbudowany w 1859 roku przez niejakiego Gastona Planté. I choć świat od tamtej pory poszedł mocno do przodu, to poczciwym ,,kwasówkom” udało się jakoś przetrwać do dziś. Wszystko dzięki ich zdolności do błyskawicznego dostarczenia ogromnej mocy, jakiej wymagają chociażby rozruszniki samochodów spalinowych. Nie bez znaczenia jest też ich niska cena – akumulatory kwasowo-ołowiowe do dziś nie mają pod tym względem konkurencji. Spieszmy się kochać akumulatory kwasowe – za 15 lat będą gatunkiem mocno zagrożonym Ponad pół wieku później, w 1908 roku Thomas Alva Edison zaprezentował światu akumulator niklowo-żelazowy (Ni-Fe). Skonstruował go z myślą o elektrycznych samochodach (tak, ta technologia również jest niezwykle stara). Niestety koszt produkcji ogniw Ni-Fe okazał się na tyle duży, iż nie znalazły one powszechnego zastosowania. Niszą, do której pasowały idealnie, okazały się segmenty urządzeń przeznaczonych do pracy pod ziemią oraz elektrycznych pociągów (dla których ,,kwasówki” były niewystarczające). Co ciekawe z akumulatorów Ni-Fe do dziś korzystają lokomotywy serwisowe londyńskiego metra (uruchamiane w razie braku prądu w mieście). Niedługo potem, po 10 latach wytężonych prac Waldemara Jungnera, w 1909 roku pojawiły się pierwsze akumulatory niklowo-kadmowe (Ni-Cd). Ich kariera bardzo szybko nabrała rozpędu, głównie za sprawą w miarę przystępnej ceny i obu Wojen Światowych. Stąd, w pierwszej połowie XX wieku, akumulatory Ni-Cd były podstawowym źródłem energii sprzętu wojskowego: od lotnictwa (rozruch silników), przez technologię komunikacyjną, na zasilaniu słynnych pocisków rakietowych V-2 kończąc. Po II Wojnie Światowej nastała era tranzystorów i miniaturyzacji, a wraz z nią potrzeba tworzenia coraz to lżejszych i mniejszych akumulatorów. Wtedy też w latach 60-tych Volkswagen opracował ogniwa niklowo-metalowo-wodorkowe (NiMh). Akumulatory te po pewnym czasie (i kilku usprawnieniach) były w stanie przechować ponad 2 razy więcej energii niż ich starsi, kadmowi bracia o tych samych gabarytach. Do tego NiMh’y były jeszcze tańsze w produkcji, przez co w latach 80-tych praktycznie przejęły rynek akumulatorów. I choć na horyzoncie majaczyła już bardzo obiecująca technologia litowa, to ogniwa NiMh bardzo długo pozostały podstawowym źródłem energii tanich elektronarzędzi, aparatów fotograficznych, zdalnie sterowanych zabawek, a nawet samochodów elektrycznych (Toyota Prius, Honda Civic Hybrid, czy Forde Espace Hybrid). Niestety ani niska cena, ani niezłe parametry, nie mogły dawać szans w starciu ze zbliżającym się wielkimi krokami litem. Ten niepozorny pierwiastek już wkrótce miał zadecydować o tym jak będzie wyglądał nadchodzący XXI wiek. Akumulatory litowo-jonowe w telefonach goszczą już od 20 lat W 2019 roku John Goodenough, Stanley Whittingham i Akira Yoshino zostali uhonorowani nagrodą Nobla w dziedzinie chemii za opracowanie i rozwój akumulatorów litowo-jonowych. To właśnie ta trójka zauważyła potencjał drzemiący w licie jeszcze w latach 70-tych i rozpoczęła nad nim badania. Pierwszy akumulator działający w oparciu o lit opracowała firma Exxon już w 1978 roku. Choć trzeba nadmienić, że określenie ,,działający” użyte jest tutaj nieco na wyrost. Tak naprawdę potrzeba było kolejnych kilkunastu lat wytężonej pracy, by wreszcie w 1991 roku firma Sony wypuściła w pełni bezpieczne, sprawne, niezwykle wydajne i dostępne dla każdego Kowalskiego akumulatory litowo-jonowe. Ich rewolucyjne wręcz parametry nie pozostawiały złudzeń: ,,litówki” rozpoczęły właśnie ekspansję, której nie da się już powstrzymać. Dziś, po około 30 latach od ich narodzin, trudno byłoby znaleźć osobę, która nie ma choć jednego takiego akumulatora przy sobie (w telefonie, czy zegarku) i co najmniej kilku w domu. Co takiego sprawiło, że lit wyparł wszystkie inne konstrukcje? Dlaczego wybór padł właśnie na ten pierwiastek i co jest w nim takiego niezwykłego? Zapraszam do dalszej części artykułu! Sztuka pozyskiwania energii Pierwiastek lit odkryty został już w 1817r.. To oznacza, że musiało minąć niemal 150 lat, nim w ogóle zaczęto brać go pod uwagę w roli składnika akumulatorów. Dlaczego trwało to tak długo? Z bardzo prostego powodu – lit to dość problematyczny i trudny do okiełznania pierwiastek. Aby dokładnie zrozumieć jego wady i zalety musimy zacząć od absolutnych podstaw. Zasadniczo wszystkie akumulatory (jak i zwykłe baterie) to pojemniki wypakowane związkami chemicznymi – związkami, które reagując ze sobą potrafią produkować prąd. I to właśnie ten prąd jest tutaj kluczem, bowiem to on niesie ze sobą życiodajną energię elektryczną, bez której żadne urządzenie elektryczne nie może działać. Ale w jaki sposób prąd elektryczny transportuje energię do naszego smartfona? To proste. Prąd to nic innego jak strumień pędzących przed siebie elektronów. No może z tym ,,pędzących” nieco przesadzam, bo elektrony są tak naprawdę potwornie powolne. Czasami jednak nie liczy się prędkość, a ilość i pod tym względem, w trakcie każdej sekundy, przez nasze smartfony przesączają się tryliony tych ,,małych kuleczek”. Każdy kto zgłębiał fizykę kwantową wie, że myślenie o elektronach jak o ,,małych kuleczkach” to zabawa dobra dla przedszkolaków. Ale czy to źle? Elektrony są tak małe, że nawet z pomocą najlepszych mikroskopów i tak nie jesteśmy w stanie ich dostrzec. Kto wie, może tak naprawdę mają one kształt kwadratów, trójkątów, albo żelkowych misiów Haribo? Zresztą kształt w kwestii transportu energii nie ma najmniejszego znaczenia. Tak naprawdę chodzi o sam ruch cząsteczek i idące za nim konsekwencje. Biorąc do ręki kamień i rzucając go przed siebie nadajesz mu pewną prędkość. A jeśli weźmiemy pod uwagę również masę kamienia, to wówczas możemy mówić o czymś, co fizycy nazywają pędem. Im większa prędkość kamienia i im większa jego masa, tym większy jest jego pęd. Nie muszę chyba tłumaczyć jak spotkanie takiego pędzącego kamienia i dajmy na to okna twojego sąsiada może się zakończyć? Fizycy taką zdolność rozpędzonych przedmiotów do czynienia destrukcji nazywają przekazywaniem energii. Miło, prawda? Mechanicznie wygląda to tak: rzucając kamieniem zużywasz energię swoich mięśni. Im więcej jej zużyjesz, tym oczywiście bardziej się zmęczysz, ale też kamień nabierze większej prędkości i będzie miał więcej energii do zrobienia tego, po co go wysłałeś – prosta kalkulacja. A teraz najciekawsze – kiedy kamień trafia w swój ostateczny cel, czyli w naszym przykładzie okno sąsiada, to następuje kolejna wymiana energii. Kamień w wyniku uderzenia musi wyhamować, a więc traci energię. To ile jej utraci zależy od tego jak mocno wyhamuje. I tutaj do gry wkracza okno, które cały ten impet musi przyjąć na siebie. Jeśli energii nie było dużo (kamień był lekki i leciał wolno), to szyba zadrży złowieszczo (ale jakoś to wytrzyma), a kamień się odbije. Natomiast jeżeli tej energii będzie za dużo (ciężki kamień, diabelnie szybki), szyba odkształci się tak mocno, że zwyczajnie pęknie, a kamień, lekko tylko spowolniony, poleci sobie dalej. Przykład może i drastyczny, ale doskonale obrazuje to, co dzieje się z elektronami. Jeżeli tylko uda nam się je rozpędzić i skierować do naszego smartfona, wówczas zaczną one trzeć i rozbijać się o zamkniętą w nim elektronikę, przekazując mu w ten sposób energię. Jeżeli wpuścimy tej energii zbyt dużo, to ta delikatna elektronika rozleci się na kawałki tak samo jak szyba. Na szczęście o odpowiednie dawki energii martwi się już sam telefon, więc nie będziemy się tym faktem teraz zajmować. Wiesz już, że prąd, a więc strumień rozpędzonych elektronów może nieść ze sobą energię. Nie przez przypadek elektryczność oparta jest na elektronach – to właśnie te cząstki, a nie na przykład protony, czy neutrony jest najłatwiej zmusić do ruchu. Ale jak? To również jest bardzo proste. Wystarczy zebrać ich ogromną ilość w jednym miejscu i je tam zamknąć. I to tyle? Owszem, bo nie wiem czy wiesz, ale z elektronami jest podobnie jak z ludźmi. Zamknij większa grupę w małym pomieszczeniu, a bardzo szybko zauważysz jak zaczną się wiercić, rozpychać i walić w drzwi, byś ich wypuścił. Elektrony również nie lubią swojego towarzystwa i najchętniej trzymają się z dala od siebie. Tak wyglądają elektrony zamknięte w kuli. Starają się uciec jak najdalej od siebie. Nie ma to oczywiście nic wspólnego z uczuciami. Po prostu elektrony obdarzone są tak zwanym ,,ładunkiem ujemnym”, a fizyka mówi nam, że cząstki o tym samym ładunku zawsze będą się wzajemnie odpychać. Więcej szczegółów na ten temat możesz w wolnej chwili przeczytać tutaj: Czym jest ładunek elektryczny? – artykuł na Elektrony chcą uciec od siebie, ale zamknięte w takim akumulatorze, czy baterii nie za bardzo mają dokąd. Rozwiązanie pojawia się, gdy akumulator taki włożymy do telefonu. Obwody naszego smartfona stają się wówczas jedyną drogą ucieczki, choć oczywiście istnieje pewien haczyk. Droga ta jest bowiem prawdziwym torem przeszkód usianym kondensatorami, rezystorami, tranzystorami i innymi ,,-torami”. Na szczęście dla nas te biedne, bogu ducha winne elektrony wolą trochę się przemęczyć i poobijać, niż spędzić ze sobą choćby kolejną sekundę w zamknięciu. Tym oto sposobem nasz telefon zdobywa energię, a elektrony płyną sobie przed siebie do… No właśnie, gdzie? By osiągnąć wieczny spokój? Niestety podstawową funkcją akumulatorów jest możliwość ich ponownego naładowania i wykorzystania. Z tego też powodu nie możemy ot tak wypuścić na wolność opuszczających nasz telefon elektronów. Zamiast tego musimy je zmagazynować, na przykład po drugiej stronie akumulatora, gdzie będą grzecznie czekały na transport z powrotem, by cały horror… to znaczy proces rozpoczął się od początku. Łatwiej powiedzieć, niż zrobić Z opisu wszystko wydaje się proste – elektrony płyną obwodami naszego telefonu w jedną stronę, a potem ładując akumulator przenosimy je z powrotem i cykl możemy zacząć od nowa. Niestety rzeczywiste wykonanie takiego mechanizmu to zupełnie inna bajka. Dlaczego? Wcześniej wspomniałem choćby o tym, że elektrony są tak małe, iż nawet nie wiemy jak wyglądają. Tym bardziej trudno byłoby nam złapać je w siatkę i ot tak zamknąć po jednej stronie akumulatora. Potem musielibyśmy jeszcze liczyć na to, że spokojnie popłyną na jego drugą stronę i tam ponownie dadzą się zamknąć. Nierealne. Jak to się w takim razie robi? Na czym polega sztuczka? Zacznijmy może od przypomnienia czegoś, co napisałem kilka akapitów wcześniej: Baterie i akumulatory wypełnione są związkami chemicznymi, które reagując ze sobą potrafią produkować prąd. Zamiast głowić się nad tym skąd wziąć pojedyncze elektrony, możemy wykorzystać fakt, że ich najlepszym źródłem są atomy – w końcu elektrony latają wokół ich jąder całymi chmarami. Ponadto same atomy bardzo często zbijają się w większe skupiska zwane molekułami, albo tworzą szereg jeszcze większych związków chemicznych. Te jesteśmy w stanie nie tylko bez trudu dostrzec, ale i zamknąć gdzie chcemy i w jakiej ilości chcemy. Oczywiście na koniec pozostaje jeszcze kwestia przekonania atomów do tego, by oddały nam swoje elektrony, a to nie zawsze jest takie łatwe… Na szczęście wybór jeśli chodzi o dawców mamy spory, bowiem przebierać możemy wśród 118 różnych pierwiastków. Warto wiedzieć, że każdy z nich ma swój indywidualny numer zwany liczbą atomową, która to wprost określa ile elektronów wiruje wokół jądra danego pierwiastka. Wszystko to niezwykle przejrzyście widać na tablicy Mendelejewa. Wybór nie jest rzecz jasna zupełnie dowolny – niektóre z pierwiastków są bardziej podatne na współpracę, inne mniej. Są też takie, których nie ma nawet sensu przekonywać – tych maruderów zaznaczyłem na biało. Dlaczego nie ma to sensu? Większość z nich to po prostu pierwiastki radioaktywne, a takich atrakcji w domowych akumulatorach raczej nie chcemy. Z kolei biała kolumna widoczna po prawej stronie tablicy (poczynając od helu) to tak zwane gazy szlachetne. Nazwano je tak dlatego, że są zbyt szlachetne, by oddać swoje elektrony na poczet zasilania jakiejś prostackiej elektroniki. Tak przynajmniej słyszałem… Wykluczając te ,,białe plamy” pozostaje nam 76 pierwiastków, które w naturze mieszają się i łączą co potencjalnie daje tysiące przeróżnych związków chemicznych. Związków, które mogą dać nam to, czego potrzebujemy. A czego potrzebujemy? Tak jak mówiłem – po jednej stronie akumulatora muszą znaleźć się związki chemiczne, które reagując ze sobą chętnie oddadzą elektrony, a po drugiej takie, które te elektrony przyciągną do siebie i przechowają do czasu ponownego naładowania. W 1800 roku niejaki Alessandro Volta odkrył pierwszą taką parę reakcji. Okazało się, że jeśli rozpuścimy cynk (Zn) w odpowiednim roztworze, to bez problemu odda nam on 2 elektrony. Z drugiej strony miedź (Cu) nie za bardzo lubi takie rozpuszczanie i z nieukrywaną radością zapewni schronienie dwóm elektronom, dzięki którym będzie w stanie się z takiego roztworu wydostać (fachowo mówimy wytrącić). I o ile taka uczciwa, jednostronna wymiana elektronów między cynkiem i miedzią stała się podstawą pierwszej w historii baterii, to niestety proces ten jest nieodwracalny. Oznacza to, że w trakcie tejże wymiany, w strukturze związków zachodzą pewne trwałe zmiany i nie możemy takiej baterii ot tak podłączyć do ładowarki i przetransportować elektronów z powrotem. Tak przynajmniej było 200 lat temu, bowiem dzisiejsza znajomość chemii i technologii pozwala stworzyć baterie oparte na cynku i miedzi, które można powtórnie naładować. To już jednak zupełnie inna historia. Pierwszą w pełni odwracalną parą reakcji była ta odkryta przez wspomnianego Gastona Planté, ochrzczona mianem akumulatora kwasowo-ołowiowego. Ołów zamknięty z jednej strony akumulatora reaguje z roztworem kwasu siarkowego, oddając po drodze 2 elektrony. Po drugiej stronie zamknięty jest tlenek ołowiu. Ołów bardzo chce oderwać się od tlenu, a do tego potrzebuje… zgadłeś, dokładnie dwóch zbłąkanych elektronów. Jak wspomniałem obie reakcje są w pełni odwracalne. To znaczy, że możemy podłączyć taki akumulator do ładowarki i ona, za pomocą energii pobieranej z gniazdka, siłą wyrwie przesłane elektrony z drugiego końca (ołów na powrót połączy się z tlenem) i przetransportuje je z powrotem na początek, wpychając je do atomu ołowiu (który wcześniej je porzucił). Zauważ, że w przypadku historii cynku i miedzi oraz ołowiu i jego tlenku piszę jedynie o dwóch przekazywanych elektronach. Ale dlaczego tylko dwóch? Miedź (Cu) i cynk (Zn) mają kolejno 29 i 30 elektronów, a ołów ma ich aż 82! Odbieranie mu tylko dwóch elektronów, skoro ma ich aż tyle wydaje się marnotrawstwem potencjału. W końcu im więcej elektronów zabierzemy, tym więcej energii mamy do wykorzystania, prawda? Jasne, ale wyciągnięcie elektronu z orbity też kosztuje. Pamiętasz o sile i energii naszych mięśni zdolnej rzucić kamieniem? Elektron również nie pomknie przed siebie ot tak, bo potrzebuje do tego energii. Energii, której źródłem są reakcje chemiczne. Prawdziwy problem tego mechanizmu odkryjemy, kiedy spojrzymy w tabelę energii potrzebnej do jonizacji pierwiastków (jonizacji, czyli właśnie odebrania bądź dołożenia im elektronów). Pokaże nam ona, że wyrwanie pierwiastkowi każdego kolejnego elektronu wymaga średnio dwa razy więcej energii niż poprzedniego. W rezultacie jesteśmy w stanie zmusić większość atomów do oddania jednego elektronu – łatwizna. Odebranie drugiego wymaga już dwa razy więcej energii, ale zwykle nie jest to aż tak duża wartość – da się zrobić. Trzeci elektron to już 4 razy więcej energii niż na początku. Niewiele znanych nam reakcji, które możemy bezpiecznie zamknąć w akumulatorze to potrafi. Cztery i więcej elektronów to już temat poza naszym zasięgiem. No chyba, że zamontujemy w akumulatorze mikroskopijne działo laserowe zdolne wybijać z atomów dowolną ilość elektronów… Tak, w takim wypadku nie byłoby problemu. Wspomniane elektronowe ograniczenie całkowicie zmienia zasady gry. W tym momencie nie zależy nam na zastosowaniu pierwiastków o dużej ilości elektronów, bo i tak wyciągniemy z nich dwie, góra trzy sztuki. Jest to o tyle istotne, że im więcej elektronów ma pierwiastek, tym automatycznie więcej protonów i neutronów znajduje się w jego jądrze i przez to cały atom staje się cięższy. Czy jest w takim razie sens pakować do akumulatora duże i ciężkie atomy ołowiu (82 elektrony), skoro równie dobrze 2 elektrony możemy wyciągnąć ze znacznie lżejszych pierwiastków? Między innymi ten właśnie czynnik sprawia, że akumulatory oparte o nikiel (Ni-Fe, Ni-Cd, NiMh) są w stanie wygenerować od 2 do 4 razy więcej energii z każdego kilograma akumulatora, niż ich ołowiowi kuzyni wagi ciężkiej. I choć nikiel nie jest specjalnie mniejszy od atomu ołowiu, to związki chemiczne jakie wykorzystuje w swoich reakcjach można z łatwością sprasować, zwinąć w rulonik i zamknąć w małej, cylindrycznej obudowie. Akumulatory kwasowe i zachodzące w nich reakcje wymagają znacznie więcej przestrzeni. Skoro ołów jest tak nieporęczny, to dlaczego oparte o niego akumulatory wciąż zasilają rozruszniki w naszych autach? Z racji tego, że w samochodach mamy sporo miejsca, a przy dwóch tonach stali na kółkach akumulator ważący kilka kilogramów nie robi różnicy, to na korzyść kwasówek przeważają trzy rzeczy: Po pierwsze do dziś pozostają one najtańszym rodzajem akumulatorów. Ołów nie jest może tak powszechny w skorupie ziemskiej jak nikiel, ale za to jego pozyskanie jest dość tanie, tak jak zresztą potrzebnego do reakcji kwasu siarkowego. Oprócz tego cały akumulator jest na tyle prosty w budowie, że teoretycznie sam mógłbyś zrobić sobie taki w sprawa to całkiem niezłe napięcie generowane przez taki akumulator. Bo widzisz w chemii baterii, oprócz ilości oddanych elektronów, istotne jest to jak bardzo dany związek chce się ich pozbyć, lub je przyjąć. Im bardziej, tym z większą prędkością elektrony są wyrzucane z jednej i zasysane z drugiej strony ogniwa. Większa prędkość to, tak jak w przypadku kamienia, więcej energii, którą elektrony zostawią, obijając się o elektronikę naszych urządzeń. Zamknięta w akumulatorach kwasowo-ołowiowych chemia generuje napięcie rzędu 2 V, co nie jest takim złym wynikiem w porównaniu do 1,2 V w Ni-Cd i NiMh. Oczywiście akumulatory w naszych samochodach mają aż 12 V, ale to wynika jedynie z połączenia w jego wnętrzu 6 mniejszych akumulatorów i ostatnia sprawa to moc. Każda reakcja chemiczna zachodzi z określoną prędkością, a ta związana z ołowiem i kwasem siarkowym zachodzi niezwykle szybko. W połączeniu z dość wysokim napięciem ogniwa, pozwala to wytworzyć w ułamku sekundy ogromną moc potrzebną do wystartowania rozruszników samochodowych (prąd płynący z akumulatora osiąga wartość rzędu kilkuset amperów). Komponenty Ni-Cd oraz NiMh nie potrafią przewodzić tak ogromnego prądu, a ich zwarta konstrukcja sprawia, że są one znacznie bardziej wrażliwe na rosnącą przy okazji takiego prądu temperaturę. Ich przewagą nad ołowiem jest z kolei znacznie większa ilość zmagazynowanej energii, która, jeśli tylko nie potrzebujemy jej szybko wyciągnąć, może nam posłużyć znacznie, ale to znacznie dłużej. Telefony komórkowe i inna przenośna elektronika to zupełnie inny temat niż rozrusznik samochodu. W tym wypadku niewielki rozmiar i waga to klucz do sukcesu. Chcemy aby nasz telefon miał duży ekran i był szybki, a do tego zamknięty był w małej i cieniutkiej obudowie. Badacze doskonale rozumieli kierunek w jakim idzie przemysł urządzeń przenośnych, dlatego też za cel obrali sobie stworzenie najlżejszych na świecie i najpojemniejszych akumulatorów w historii. Aby to zrobić, musieli spróbować okiełznać jeden z najlżejszych dostępnych nam pierwiastków… W tym momencie na scenę (cały na biało) wkracza lit (Li). Na tablicy Mendelejewa oznaczony jest dumnym numerem 3, a to sprawia, że jest on jednym z najlżejszych znanych nam pierwiastków – pod tym względem przegrywa jedynie z wodorem i helem. W licie ciekawe jest również to, że będąc pierwiastkiem lżejszym od takiego tlenu czy azotu, w przeciwieństwie do nich jest ciałem stałym. Dzięki temu jego atomy są ciasno upakowane, a taki zwarty materiał znacznie łatwiej jest obrobić i zamknąć w niewielkim akumulatorze. Jasne, gazy można przecież potraktować wysokim ciśnieniem i skompresować, ale skoro mamy super-lekki lit, to po co kombinować? Lit (nie jako atom, a jako kawałek materii) waży mniej więcej tyle co drewno sosnowe. Jego gęstość to jakieś 0,51 g/cm3, a to oznacza, że jest on niemal dwukrotnie lżejszy od wody, jakieś 16 razy lżejszy od niklu i 20 razy lżejszy od ołowiu. Idealny przepis na super-lekkie baterie! Z drugiej jednak strony waga piórkowa kompletnie nie przekłada się na rozmiar atomu. Choć lit ma tylko po trzy protony, neutrony i elektrony, to w rzeczywistości ponad połowa tablicy Mendelejewa jest od niego mniejsza! W tym ołów, który przypomnę ma aż po 82 sztuki protonów, neutronów i elektronów. Względny rozmiar atomów; źródło danych: To, że atom zbudowany z 20 razy większej liczby cząsteczek, będący 20 razy cięższy może być jednocześnie mniejszy, to dość skomplikowana do wyjaśnienia kwestia. Orbity wokół atomów potrafią być naprawdę pokręcone, jądro atomowe przyciąga elektrony z różną siłą, a te oddziałują również ze sobą nawzajem. Ostateczny wynik jest taki, że choć lit jest najlżejszy i oparte o niego akumulatory również takie będą, to rozmiar jego atomów wcale nie sprawia, że możemy zamknąć tego litu w małej baterii nie wiadomo ile. Patrząc z perspektywy atomowej to zajmuje on praktycznie tyle samo miejsca co ołów. A może akumulatory litowe nie są wcale tak fantastyczne jak wszyscy nam mówią? Bez obaw – są świetne. Cała tajemnica baterii litowo-jonowych tkwi tak naprawdę w określeniu „jonowy”. Jonizowanie to, jak już wspomniałem, ładne określenie na odbieranie bądź dokładanie atomom elektronów. Kiedy pierwiastek odda elektron lub jakiś przyjmie, wówczas nazywamy go jonem. Lit w standardzie ma 3 elektrony. Dwa z nich znajdują się na tyle blisko jądra atomowego i są przez nie tak mocno przyciągane, że możemy o nich zapomnieć. Za to do opisania trzeciego elektronu najlepiej pasuje określenie ,,kula u nogi”. Wiem, brzmi zabawnie, ale w tym wypadku nie przesadzam. Lit chce się tego trzeciego elektronu pozbyć tak bardzo, że wchodzi w reakcję z niemal wszystkim co spotka na swojej drodze – nawet z wodą, czy powietrzem! Myślisz pewnie: „Co z tego, to tylko jeden elektron. Słabo!”. Nie daj się jednak zmylić pozorom – lit tak bardzo chce zostać jonem, że w trakcie oddawania tego jednego elektronu generuje napięcie rzędu 3,2 – 3,8 V! To sprawia, że każdy jeden uwolniony przez lit elektron niesie ze sobą 3 razy więcej energii niż ten z akumulatorów niklowych i dwa razy więcej niż ten z kwasówek. No tak, ale ołów daje przecież dwa elektrony, więc gdzie ta przewaga litu? Już tłumaczę. Każdy akumulator do oddania i przyjmowania elektronów wykorzystuje reakcje chemiczne – są one jedynym możliwym źródłem potrzebnej do tego energii. Naukowcy, którzy otrzymali Nobla za opracowanie litowych akumulatorów tak naprawdę dostali go za to, że… poniekąd oszukali lit. Wiedzieli oni, że zmuszenie tego pierwiastka do oddania elektronu to nie sztuka – jednorazowe baterie litowe istniały od lat. Problemem było znalezienie takiej reakcji, poprzez którą po drugiej stronie akumulatora lit chętnie przyjmie odrzucony elektron z powrotem. Oczywiście kilka takich reakcji udało się znaleźć, ale wszystkie one miały swoje ograniczenia i istotne wady, całkowicie niweczące potencjał litu. Wtedy nagle, w latach 70tych ktoś wpadł na pomysł, że żadna reakcja nie musi tak naprawdę zachodzić, dopóki lit nie będzie o tym wiedział. Oszustwo godne Nobla Atom litu z trzema elektronami na pokładzie jest dość duży. Kiedy jednak odda swój elektron i stanie się jonem, wówczas jego średnica zmniejsza się praktycznie dwukrotnie. Jest on wówczas o ponad 20% mniejszy od ołowiu, który już oddał dwa elektrony! Przyznasz, że to dość spora różnica. Do tego naukowcy odkryli strukturę zwaną tlenkiem kobaltu. Okazało się, że jon litu ma akurat taką wielkość, że idealnie wpasowuje się w wąskie szczeliny między warstwami tego związku. Dodatkowo kobalt nie jest zbyt wybrednym pierwiastkiem i potrafi zaopiekować się dodatkowym elektronem, jaki przy okazji oddaje mu lit. Ostatecznie taki tlenek kobaltu z powtykanym tu i ówdzie litem nazywamy tlenkiem kobaltu litu (LiCoO2) i jest to podstawowy związek wykorzystywany w akumulatorach litowo-jonowych. A i przy okazji mogę dodać, że taki proces wciskania atomów w strukturę jakiegoś związku nazywa się interkalacją. Lit czuje się w takim układzie częścią związku, choć nie tworzy z nim pełnoprawnego wiązania. Kobaltowi jest właściwie wszystko jedno, więc możemy uznać, że wszyscy są zadowoleni. Tam jednak gdzie wszyscy są szczęśliwi nie ma żadnej energii elektrycznej do wykorzystania. My musimy sprawić, by litowi było niewygodnie, by chciał zmienić stan, w jakim się znalazł. W tym celu podłączamy taki tlenek kobaltu litu do ładowarki i zaczynamy wysysać elektrony. Akcja ta na kobalcie nie robi żadnego wrażenia – jest on metalem podobnym do miedzi i żelaza, czyli przewodnikiem, który nie do końca dba o to, czy zwiniemy mu jakiś elektron. A już z pewnością nie będzie mu szkoda tego, który przed chwilą otrzymał od litu. Niestety sytuacja ta stawia jon litu w bardzo trudnym położeniu. Wcześniej oddał on ujemnie naładowany elektron, przez co sam stał się nieco dodatnio naładowany. Teraz elektron ten wypompowaliśmy na zewnątrz, przez co cała struktura tlenku kobaltu stała się delikatnie dodatnia. Fizyka jest w tej kwestii nieubłagana – dodatni tlenek kobaltu zacznie odpychać dodatni jon litu. Pamiętasz jak wspominałem o tym na początku artykułu? Takie same ładunki, czy to dodatnie, czy ujemne będą się zawsze odpychać. Tlen i kobalt trzymają się siebie mocno – to dość zwarta struktura pełniąca rolę swego rodzaju rusztowania. Jony litu, które powciskały się gdzie mogły, ale do niczego się tak naprawdę porządnie nie przyczepiły, zostają wypchnięte ze struktury. Lit nie ma się dokąd udać – z elektronem było mu źle, ale bez niego i na dodatek bez innych atomów, do których może się przykleić jest jeszcze gorzej. Nie wiedząc co zrobić odwraca się i oto widzi światełko w tunelu. Tam, po drugiej stronie akumulatora roztacza się niebieskawy blask i przyciąga go jakaś tajemnicza siła. Jak gdyby tam było jego miejsce… Lit przemierza wnętrze akumulatora, przeciskając się przez nasączony elektrolitem separator, który dzieli akumulator na dwie części. Za nim widzi kolejny układ warstw, tym razem upiornie czarny. Nim zdąży wyhamować, ciągnięty tajemniczą siła wpada między warstwy ciemnej, grafitowej struktury i grzęźnie tam, nie mając siły się wyrwać. Spogląda w głąb i widzi, że w tej samej strukturze uwięzione są znajome elektrony… Tak, to dokładnie te same elektrony, które on i inne jony litu przed chwilą oddały kobaltowi. Lit orientuje się, że tajemnicza, przyciągająca siła i niebieskawy blask pochodziły właśnie od nich – morza ujemnie naładowanych elektronów, do których dodatnio naładowany jon litu czuje naturalny pociąg. Uwięziony lit nie jest jednak z tego faktu zadowolony. Nie chce na powrót łączyć się z elektronami. Niestety z jednej strony cała ich chmara wciąga go w głąb grafitowej struktury, z drugiej zaś wciąż odczuwa odpychające echo kobaltu. W ten oto sposób lit wpada w pułapkę. W wymyślone przez genialnych konstruktorów oszustwo, pozwalające utrzymać go w niewygodnym położeniu. Lit grzęźnie wewnątrz tego grafitowego labiryntu i to bez pomocy jakiejkolwiek reakcji chemicznej. Oczywiście nie spędzi on tam wieczności. Musi jedynie wytrzymać do momentu, w którym do akumulatora podłączymy jakiś odbiornik. Wpinając akumulator do np. telefonu, elektrony zyskują drogę ucieczki – grafit nie jest dla nich tak gościnny jak kobalt, stąd czują się w jego strukturze jak sardynki zamknięte w puszce. Słysząc ciche, niosące się przewodami nawoływanie kobaltu, elektrony postanawiają wykorzystać okazję. Te lekkie i zwinne cząstki bez problemu uciekają z grafitowej pułapki. Po drodze zostawiają w telefonie standardową „opłatę” energetyczną i ponownie powracają do struktury tlenku kobaltu, któremu jak wiemy i tak jest wszystko jedno… Obojętny za to nie jest na pewno lit. Dzięki temu, że elektrony powoli znikają, maleje też siła trzymająca go między warstwami grafitu. Z drugiej strony kobalt karmiony elektronami również zapomina o wystosowanym wcześniej akcie nienawiści (to znaczy przestaje on być naładowany dodatnio i odpychać lit). Lepszej okazji nie będzie – jony litu opuszczają grafit i przedzierają się z powrotem przez separator, docierając wreszcie do przytulnych warstw kobaltu, wyłożonych mięciutką połacią tlenu. W ten oto sposób zakończył się cykl ładowania i rozładowania akumulatora, w trakcie którego jony litu przemierzyły jego wnętrze raz w jedną, raz w drugą stronę. Mechanizm ten nie bez powodu określa się mianem ,,bujanego fotela” (ang. rocking chair). Geniusz i prostota jakie stoją za tym pomysłem przyczyniły się do największej obok Internetu rewolucji XXI wieku – powstania akumulatora litowo-jonowego. Uproszczona animacja akumulatora litowo-jonowego Cena geniuszu Ogniwa litowo-jonowe to najwydajniejsze i najpotężniejsze akumulatory jakie do tej pory pojawiły się na rynku. Niestety jakość, jak to zwykle bywa, niesie ze sobą wysoką cenę. Skąd się ona bierze? Zacznijmy może od tego, że chęć litu do reagowania wszędzie i ze wszystkim sprawia, że jest on dość problematyczny w przechowywaniu i obróbce. Z tego samego powodu nie znajdziemy na naszej planecie litu w czystej postaci. Najczęściej odzyskuje się go ze związków chemicznych, takich jak chlorek litu (LiCl), wodorotlenek litu (LiOH) i węglan litu (Li2CO3). Nie jest to proces ani łatwy, ani wydajny. Do uzyskania kilograma czystego litu potrzeba aż 5,3 kg węglanu litu. Największe złoża tego surowca znajdują się w Boliwii (około 32% światowych zasobów), a do największych producentów czystego litu należą Chile, Chiny i Argentyna, produkując około kilogram litu w ciągu każdej sekundy jaką spędzasz na czytaniu tego artykułu. Do tego wyprodukowanie akumulatora z pierwiastka, który ma tak ogromną energię i tylko czyha na okazję, by z czymś przereagować wymaga zastosowania całej masy zabezpieczeń. Akumulatory Li-Ion nie lubią przegrzewania, przeładowania i nadmiernego rozładowania. Stąd naszpikowane są elektroniką trzymającą w ryzach parametry akumulatora. To jednak nie zawsze zdaje egzamin, bo wystarczy najmniejsze zanieczyszczenie litu lub błąd w trakcie produkcji, by wszystko zakończyło się efektownym pożarem. Słyszałeś może o aferze z wybuchającymi bateriami w Samsungach Galaxy Note 7? Swego czasu zabronione było wnoszenie tego smartfona na pokład samolotu, a firma Samsung rozsyłała klientom specjalnie zabezpieczone opakowania przeznaczone do zwrotu tego niebezpiecznego telefonu. Myślę jednak, że nie będziemy teraz wnikać w co bardziej szczegółowe aspekty techniczne akumulatorów Li-Ion. Te wolałbym poruszyć w osobnym, przeznaczonym do tego artykule. Mam nadzieję, że dzisiejsza podróż uświadomiła Ci jak te akumulatory działają i jakim wyzwaniem były dla uczonych pod koniec XX wieku. Następnym razem porozmawiamy o podtypach baterii Li-Ion, ich zastosowaniu, a także ogólnych wadach i zaletach. Czym różni się akumulator w smartfonie od tego w samochodzie elektrycznym? Czym tak naprawdę są następcy Li-Ionów, czyli baterie litowo-polimerowe? Czy baterie z wody morskiej mają szansę za chwilę zdetronizować ,,litówki”? Jeśli nie chcesz przegapić żadnego nadchodzącego artykułu, to zapisz się poniżej na newsletter lub polub moją moją stronę na facebooku. Do usłyszenia! Dzięki za poświęcony czas! Bibliografia Lithium Batteries Science and Technology – C. Julien, A. Mauger, A. Vijh, K. Zaghib, Handbook of Batteries Third Edition – D. Linden, T. Reddy, Akira Yoshino – Lithium-ion battery and its evolution – dokument dostępny pod adresem: Lithium Use in Batteries – T. Goonan, Department of the Interior, Geological Survey. – model 3D struktury tlenku kobaltu litu. How Does a Lithium-ion Battery Work? – Office of Energy Efficiency and Renewable Energy, adres: Podobało się? Zajrzyj na i wspieraj moją dalszą pracę! A może chciałbyś przeczytać ciekawą książkę? Powiadomić Cię o nowych artykułach? Polecam zapisanie się na newsletter lub zajrzenie na facebook’a. W ten sposób nie przegapisz żadnego nowego tekstu! Ogniwa litowo-jonowe są obecnie najlepszym rozwiązaniem do zapewniania energii samochodom elektrycznym o średnim i dużym zasięgu. Producenci dążą do osiągnięcia jak największej gęstości ogniwa przy zachowaniu jak najwyższego poziomu bezpieczeństwa. W najbliższych latach rynek baterii litowo-jonowych będzie notował dalsze wzrosty, a zużycie ekwiwalentu węglanu litu wzrośnie ponadtrzykrotnie. Tymczasem wielkie koncerny samochodowe poszukują nowych rozwiązań pozwalających opracować wydajne i bardzo żywotne baterie. Toyota rozwija technologię baterii półprzewodnikowych. Z kolei rynek chiński przyszłość transportu widzi w ogniwach wodorowych. – Duże zainteresowanie ogniwami litowo-jonowymi wiąże się z tym, że mają one znacznie lepsze parametry niż dotychczasowe akumulatory na rynku. Mają np. trzykrotnie większą gęstość energii, gęstość mocy w stosunku do toksycznych ogniw niklowo-kadmowych, czy niklowo-wodorkowych. Duża gęstość mocy skumulowana na jednostkę masy i objętości to zasadnicze parametry, poza tym liczba cykli pracy jest również konkurencyjna w stosunku do akumulatorów niklowo-wodorkowych – mówi w rozmowie z agencją informacyjną Newseria Innowacje profesor Janina Molenda, kierownik Katedry Energetyki Wodorowej AGH w Krakowie. Rynek baterii litowo-jonowych stale się rozwija. Producenci pojazdów elektrycznych, a zwłaszcza producenci samochodów, nieustannie dążą do tego, by baterie cechowały się wyższą gęstością energii, a także bezpieczeństwem stosowania, żywotnością i stabilnością. Wszystko po to, by samochody elektryczne były zdolne na jednym ładowaniu pokonać jak najwięcej kilometrów, a także by późniejsze doładowywanie baterii trwało jak najkrócej. Nowoczesne baterie muszą też dobrze radzić sobie z pokryciem dużo większego zapotrzebowania na energię przy ruszaniu z miejsca i przyspieszaniu pojazdu. Na razie najlepiej radzą sobie z tym wszystkim właśnie ogniwa litowo-jonowe. – Żywotność akumulatorów litowych do samochodów jest przewidziana na 10 lat, więc są to technologie, które bazują na materiałach bardziej stabilnych. Stabilność ogniwa litowego dla zastosowań długoletnich o większym czasie trwania wiąże się ze stabilnością poszczególnych komponentów w kontakcie z elektrolitem ciekłym. Ciągle w bateriach litowych używany jest z konieczności elektrolit ciekły, bo nie mamy elektrolitu stałego, który by odpowiednio przewodził w temperaturze pokojowej – tłumaczy ekspertka. Stały elektrolit w elektromobilności planuje wykorzystać Toyota. Japoński koncern w najbliższych latach postawi na wdrożenie baterii półprzewodnikowych. Te mają oferować większą gęstość energii niż baterie litowo-jonowe używane przez Teslę i innych konkurentów. Akumulatory tego typu wykorzystują stały elektrolit zamiast ciekłego elektrolitu stosowanego w akumulatorach litowo-jonowych. Prezentacja rozwiązania w autach Toyoty możliwa będzie najwcześniej w 2020 roku. Japoński producent swoją technologią planuje się podzielić ze swoimi partnerami, tzn. Mazdą, Suzuki i Subaru. Bateriami półprzewodnikowymi zainteresowane są także marki takie jak Volkswagen czy BMW. Z kolei Tesla, jeden ze światowych liderów elektromobilności, rozwijać będzie w najbliższych latach własne ogniwa litowo-jonowe. Na razie przedsiębiorstwo Elona Muska współpracuje na tym polu z japońskim koncernem Panasonic. Położenie nacisku na produkcję własnych baterii pozwoli amerykańskiemu gigantowi uniezależnić rozwój swoich technologii dla elektromobilności od tego partnera. W najbliższych latach dominującymi na rynku będą ogniwa litowo-jonowe o wyższej zawartości niklu – wynika ze spotkania naukowców podczas XI konferencji Lithium Supply&Markets, która odbyła się w połowie czerwca w chilijskim Santiago. Katody niklowo-kobaltowo-manganowe staną się bardziej popularne z uwagi na ich wyższą gęstość w porównaniu z katodami z żelazofosforanem litu. Te pierwsze nadają się szczególnie do zasilania w energię pojazdów o średnich (250–350 km) i wysokich (ponad 500 km) zasięgach, podczas gdy te drugie bardziej sprawdzają się w autobusach i małych samochodach stosowanych na dystansach do 100 km. Dzięki ogniwom litowo-jonowym możliwy jest jednak rozwój nie tylko elektromobilności. – W tej chwili zastosowanie ogniw litowych to nie tylko przenośna elektronika czy nawet samochody elektryczne lub hybrydowe, lecz także wielkie magazyny energii o pojemności nawet 100 megawatów. Takie instalacje powstają już na świecie – mówi prof. Janina Molenda. Chiny, będące największym na świecie rynkiem motoryzacyjnym, a także liderem sprzedaży tanich aut elektrycznych, przyszłość widzą w ogniwach wodorowych. Zgodnie z założeniami tamtejszego rządu w ciągu najbliższej dekady po chińskich drogach ma jeździć milion aut z napędem wodorowym. W przyszłym roku chiński rząd wycofa dotacje długoterminowe dla rozwoju elektromobilności przy jednoczesnym utrzymaniu dotacji dla transportu opartego na ogniwach wodorowych. Według ustaleń z Lithium Supply & Markets całkowite zużycie ekwiwalentu węglanu litu na świecie osiągnie najprawdopodobniej 1 mln ton do 2025 r. W 2018 roku było to około 300 tys. ton. Newseria

baterie litowo jonowe do samochodów elektrycznych